M1.		(a)	$Pt(NH_3)_2Cl_2 + H_2O \to [Pt(NH_3)_2Cl(H_2O)]^{\scriptscriptstyle +} + Cl^{\scriptscriptstyle -}$	
		Corr	rect product	1
		Bala	inced equation	1
	(b)	(i)	Hydrogen bond	1
			Oxygen (or nitrogen) Only score this mark if type of bond is correct	1
		(ii)	Co-ordinate Nitrogen (or oxygen)	1
			Bond type must be correct to score this mark but allow M2 if bond is covalent	1
	(c)	Killi	ng them or causing damage (medical side effects) Allow any correct side effect (e.g. hair loss) Allow kills healthy (or normal) cells	1
		Мау	attach to DNA in normal cells	1

M2. (a) A shared <u>electron</u> pair or a <u>covalent</u> bond (1) Both electrons from one atom (1) *OR when a Lewis base reacts with a Lewis acid Mark points separately* [8]

	(b)	Brønsted-Lowry acid: A proton or H⁺ donor (1) Not H₃O⁺		
		<i>Lewis acid</i> : A lone or electron pair acceptor (1)	2	
	(c)	Two atoms or two points of attachment (1) Each donating a lone electron pair (1) OR forms 2 (1) co-ordinate bonds (1) OR donates two (1) pairs of electrons (1)	2	
	(d)	Change in co-ordination number: 6 to 4 (1)		
		<i>Reason for change</i> : chloride ligands are larger than water ligands (1)	2	
		OR greater repulsion between chloride ligands DO NOT allow chlorine or Cl	_	
	(e)	Same number (1), and same type of bonds (1), broken and made	2	
	(f)	CINH ₃ CH ₂ CH ₂ NH ₃ CI (1) OR (NH ₃ CH ₂ CH ₂ NH ₃) ²⁺ 2CI ²		
		Allow C ₂ H ₁₀ N ₂ Cl ₂ and NH ₃ ClCH ₂ CH ₂ NH ₃ Cl	1	[11]
M3.		(a) (i) Fe + 2HCl \rightarrow FeCl ₂ + H ₂ (allow ionic formulae)		
		or Fe + 2H ⁺ \rightarrow Fe ²⁺ + H ₂	1	

	(ii)	PV = nRT n = PV/RT (allow either formula but penalise contradiction)	1
		$n = \frac{\frac{110000 \times 102 \times 10^{-6}}{8.31 \times 298}}{n}$	1
		= 4.53 × 10 ⁻ (mol) (answer must have at least 3 sig. figs. Ignore units)	1
	(iii)	Moles of iron = 4.5(3) × 10 ^{.₃} mol (allow conseq on (a)(ii))	
		(or = $4.2(5) \times 10^{-3}$ if candidate uses given moles of hydrogen)	1
		Mass of iron = $4.53 \times 10^{-3} \times 55.8 = 0.253$ g (mark is for method mass = moles × A_r) (Mass of iron can be 56)	1
	(iv)	0.253 × 100/0.263 = 96.1 % (mark is for answer to 2 sig. figs.) (allow conseq on mass of iron. E.g. = 90% from 4.2(5) × 10⁻³ moles of H₂ and Fe)	
		(Do not allow answers greater than or equal to 100%)	1
(b)	(i)	Fe²+ → Fe³+ + e-	
		(ignore state symbols)	1
		$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O	1
		$Cr_{2}O_{7^{2-}}$ + 14H ⁺ + 6Fe ²⁺ \rightarrow 2Cr ³⁺ + 7H ₂ O + 6Fe ³⁺	1
	(ii)	Moles of dichromate = moles Fe²+/6 = 4.53 × 10⁻³/6 = 7.55 × 10⁻⁴ (Allow conseq, mark is for method (a)(iii)/6)	
		Volume of dichromate = moles/concentration (= $(7.55 \times 10^{-4} \times 1000)/0.0200$) (mark is for this method)	1
			1

V = 37.75 (cm³)

(allow 37.7 to 37.8, allow no units but penalise wrong units) (allow conseq on moles of dichromate) (if value of 3.63×10^{-3} used answer is 30.2 to 30.3, otherwise ans = moles $Fe^{2*}/0.00012$) (if mole ratio wrong and candidate does not divide by 6, max score is ONE for volume method)

(iii) (KMnO₄) will also oxidise (or react with) Cl⁻ (or chloride or HCl)

M4. (a) Electron transitions/electrons excited in d shell (1) or d-d transition Do NOT allow charge transfer

> (Energy in) visible range **(1)** (NOT emits in visible region)

 (b) Change 1: (Different) oxidation states (1) Change 2: (Different) ligands (1) Change 3: (Different) co-ordination number (1) Do not allow shape as an answer

3

2

1

1

[14]

(c) Add an appropriate (or a given correct) ligand to <u>intensify colour</u> (1)

 e.g. thiocyanate (CNS)⁻ or bipyridyl
 Make up solutions of known concentration (1)
 Measure absorption or transmission (1)
 Plot graph of results or calibration curve (1)
 Measure absorption of unknown and (1)
 compare

 N.B.: Allow concentration statement if included in graph statement

 Allow adsorption but circle the d
 Also

M5.		(a)	(i) An atom, ion or molecule which can donate a lone electron pair	1
		(ii)	A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state	1
		(iii)	The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms	1
	(b)	(i)	Allow the reverse of each substitution $[Co(H_2O)_6]^{2*} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2*} + 6H_2O$	
			Complex ions	1
			Balanced <i>Allow partial substitution</i>	1
		(ii)	$[Co(H_2O)_6]^{2*} + 4CI^- \rightarrow CoCI^{\frac{2}{4}} + 6H_2O$	
			Complex ions Balanced	1
			or H_2O or NH_3 or $C_2O^{\frac{2}{4}}$ by CF	1

eg.	(iii)	$[C_0(H_2O)_6]^{2+} + 3C_2O_4^{2-} \rightarrow [C_0(C_2O_4)_3]^{4-} + 6H_2O$	
-----	-------	--	--

Complex ions

Balanced

1

1

Allow all substitution except
(i) NH₃ by H₂O
(ii) more than 2Cl⁻ substituted for NH₃ or H₂O

eg. (iv)
$$[Co(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Co(EDTA)]^{2-} + 6H_2O$$

Complex ions

Balanced

1

1

or H₂O or NH₃ by
$$C_2O_4^{2-}$$
 and NH_3 or $^{CJ^-}$ by $^{EDTA^{4-}}$

(c)
 (i)

$$[Fe(H_2O)_6]^{2+}$$
 1

 (ii)
 $Fe(OH)_2$ or $Fe(OH)_2(H_2O)_x$ where $x = 0$ to 4
 1

 (iii)
 Fe^{2+} is oxidised to Fe^{3+} or $Fe(OH)_3$
 1

 By oxygen in the air
 1

M6.B

[15]