M1. (a) $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{Cl}^{-}$
Correct product
Balanced equation
(b) (i) Hydrogen bond

Oxygen (or nitrogen)

Only score this mark if type of bond is correct
(ii) Co-ordinate

Nitrogen (or oxygen)
Bond type must be correct to score this mark but allow M2 if bond is covalent
(c) Killing them or causing damage (medical side effects)

Allow any correct side effect (e.g. hair loss)
Allow kills healthy (or normal) cells

May attach to DNA in normal cells

M2. (a) A shared electron pair or a covalent bond (1) Both electrons from one atom (1)

OR when a Lewis base reacts with a Lewis acid Mark points separately
(b) Brønsted-Lowry acid: A proton or H^{+}donor (1) Not $\mathrm{H}_{3} \mathrm{O}^{+}$

Lewis acid: A lone or electron pair acceptor (1)
(c) Two atoms or two points of attachment (1) Each donating a lone electron pair (1)

OR forms 2 (1) co-ordinate bonds (1) OR donates two (1) pairs of electrons (1)
(d) Change in co-ordination number: 6 to 4 (1)

Reason for change: chloride ligands are larger than water ligands (1)
OR greater repulsion between chloride ligands DO NOT allow chlorine or Cl
(e) Same number (1), and same type of bonds (1), broken and made
(f) $\mathrm{ClNH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$ (1)
$\mathrm{OR}\left(\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)^{2+} 2 \mathrm{Cl}$
Allow $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ and $\mathrm{NH}_{3} \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$

M3. (a) (i) $\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$ (allow ionic formulae) or $\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}$
(ii) $\mathrm{PV}=\mathrm{nRT} \mathrm{n}=\mathrm{PV} / \mathrm{RT}$
(allow either formula but penalise contradiction)

1
$n=\frac{110000 \times 102 \times 10^{-6}}{8.31 \times 298}$
$=4.53 \times 10^{-3}(\mathrm{~mol})$
(answer must have at least 3 sig. figs. Ignore units)
(iii) Moles of iron $=4.5(3) \times 10^{-3} \mathrm{~mol}$
(allow conseq on (a)(ii))
(or $=4.2(5) \times 10^{-3}$ if candidate uses given moles of hydrogen)

Mass of iron $=4.53 \times 10^{-3} \times 55.8=0.253 \mathrm{~g}$
(mark is for method mass $=$ moles $\times A_{r}$)
(Mass of iron can be 56)
(iv) $0.253 \times 100 / 0.263=96.1 \%$ (mark is for answer to 2 sig. figs.)
(allow conseq on mass of iron. E.g. $=90 \%$ from
4.2(5) $\times 10^{-3}$ moles of H_{2} and Fe)
(Do not allow answers greater than or equal to 100\%)
(b) (i) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
(ignore state symbols)
$\mathrm{Cr}_{2} \mathrm{O}_{7^{2-}}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}$
(ii) Moles of dichromate $=$ moles $\mathrm{Fe}^{2+} / 6$
$=4.53 \times 10^{-3 / 6}=7.55 \times 10^{-4}$
(Allow conseq, mark is for method (a)(iii)/6)

Volume of dichromate $=$ moles/concentration $\left(=\left(7.55 \times 10^{-4} \times 1000\right) / 0.0200\right)$
(mark is for this method)

$$
\mathrm{V}=37.75\left(\mathrm{~cm}^{3}\right)
$$

(allow 37.7 to 37.8, allow no units but penalise wrong units) (allow conseq on moles of dichromate) (if value of 3.63×10^{-3} used answer is 30.2 to 30.3 , otherwise ans $=$ moles $\mathrm{Fe}^{2+} / 0.00012$) (if mole ratio wrong and candidate does not divide by 6, max score is ONE for volume method)
(iii) $\left(\mathrm{KMnO}_{4}\right)$ will also oxidise (or react with) Cl (or chloride or HCl)

M4. (a) Electron transitions/electrons excitedin d shell (1) or d-d transition Do NOT allow charge transfer

$$
\begin{aligned}
& \text { (Energy in) visible range (1) } \\
& \text { (NOT emits in visible region) }
\end{aligned}
$$

(b) Change 1: (Different) oxidation states (1) Change 2 : (Different) ligands (1)
Change 3: (Different) co-ordination number (1)
Do not allow shape as an answer
(c) Add an appropriate (or a given correct) ligand to intensify colour (1) e.g. thiocyanate (CNS)- or bipyridyl

Make up solutions of known concentration (1)
Measure absorption or transmission (1)
Plot graph of results or calibration curve (1)
Measure absorption of unknown and (1)
compare
N.B.: Allow concentration statement if included in graph statement

Allow adsorption but circle the d
Also

M5. (a) (i) An atom, ion or molecule which can donate a lone electron pair
(ii) A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state
(iii) The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms
(b) (i) Allow the reverse of each substitution
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions

Balanced

Allow partial substitution

(ii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl} \rightarrow \mathrm{CoCl}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Complex ions

Balanced

$$
\text { or } \mathrm{H}_{2} \mathrm{O} \text { or } \mathrm{NH}_{3} \text { or } \mathrm{C}_{2} \mathrm{O}^{2-} \text { by } \mathrm{Cl}
$$

eg.

Complex ions

Balanced
Allow all substitution except
(i) NH_{3} by $\mathrm{H}_{2} \mathrm{O}$
(ii) more than 2Cト substituted for NH_{3} or $\mathrm{H}_{2} \mathrm{O}$
eg.
(iv) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4} \rightarrow[\mathrm{Co}(\mathrm{EDTA})]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Complex ions

Balanced
or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} by $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and NH_{3} or Cl^{-}by EDTA^{4}
(c) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(ii) $\mathrm{Fe}(\mathrm{OH})_{2}$ or $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\times}$where $x=0$ to 4
(iii) Fe^{2+} is oxidised to Fe^{3+} or $\mathrm{Fe}(\mathrm{OH})_{3}$

By oxygen in the air

